Time Tracking¶
Pipeline description¶
This example loads a 2D time-dependent scalar field, where time steps are stored as a sequence of data arrays.
Using TrackingFromFields, a tracking mesh for the temporal evolution of critical points is computed. This filter computes an optimal matching between persistence diagrams (with respect to Wasserstein metric), and discards critical point pairs below a persistence of 1% by default (parameter Tolerance
).
The state file further contains an animation of the critical points over time.
ParaView¶
To reproduce the above screenshot, go to your ttk-data directory and enter the following command:
paraview states/timeTracking.pvsm
Python code¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
To run the above Python script, go to your ttk-data directory and enter the following command:
pvpython python/timeTracking.py
Inputs¶
- timeTracking.vti: time-dependent vorticity of a 2D vortex street, with time steps represented by data arrays '000', '002', ..., '118'
Outputs¶
timeTracking.vtp
: tracking mesh of critical points