|
| PersistenceDiagram () |
|
void | setBackend (const BACKEND be) |
|
void | setComputeMinSad (const bool data) |
|
void | setComputeSadSad (const bool data) |
|
void | setComputeSadMax (const bool data) |
|
template<typename scalarType , typename triangulationType > |
void | augmentPersistenceDiagram (std::vector< PersistencePair > &persistencePairs, const scalarType *const scalars, const triangulationType *triangulation) |
| Complete a ttk::DiagramType instance with scalar field values (useful for persistence) and 3D coordinates of critical vertices.
|
|
ttk::CriticalType | getNodeType (ftm::FTMTree_MT *tree, ftm::TreeType treeType, const SimplexId vertexId) const |
|
void | sortPersistenceDiagram (std::vector< PersistencePair > &diagram, const SimplexId *const offsets) const |
|
template<typename scalarType > |
int | computeCTPersistenceDiagram (ftm::FTMTreePP &tree, const std::vector< std::tuple< ttk::SimplexId, ttk::SimplexId, scalarType, bool > > &pairs, std::vector< PersistencePair > &diagram) const |
|
template<typename scalarType , class triangulationType > |
int | execute (std::vector< PersistencePair > &CTDiagram, const scalarType *inputScalars, const size_t scalarsMTime, const SimplexId *inputOffsets, const triangulationType *triangulation) |
|
template<typename scalarType , class triangulationType > |
int | executeFTM (std::vector< PersistencePair > &CTDiagram, const scalarType *inputScalars, const SimplexId *inputOffsets, const triangulationType *triangulation) |
|
template<class triangulationType > |
int | executeProgressiveTopology (std::vector< PersistencePair > &CTDiagram, const SimplexId *inputOffsets, const triangulationType *triangulation) |
|
template<typename scalarType , class triangulationType > |
int | executeApproximateTopology (std::vector< PersistencePair > &CTDiagram, const scalarType *inputScalars, const triangulationType *triangulation) |
|
template<class triangulationType > |
int | executePersistentSimplex (std::vector< PersistencePair > &CTDiagram, const SimplexId *inputOffsets, const triangulationType *triangulation) |
|
template<typename scalarType , class triangulationType > |
int | executeDiscreteMorseSandwich (std::vector< PersistencePair > &CTDiagram, const scalarType *inputScalars, const size_t scalarsMTime, const SimplexId *inputOffsets, const triangulationType *triangulation) |
|
template<class triangulationType > |
void | checkProgressivityRequirement (const triangulationType *triangulation) |
|
template<class triangulationType > |
void | checkManifold (const triangulationType *const triangulation) |
|
void | preconditionTriangulation (AbstractTriangulation *triangulation) |
|
void | setOutputMonotonyOffsets (void *data) |
|
void | setOutputOffsets (void *data) |
|
void | setOutputScalars (void *data) |
|
void | setDeltaApproximate (double data) |
|
template<class triangulationType > |
void | checkProgressivityRequirement (const triangulationType *ttkNotUsed(triangulation)) |
|
| Debug () |
|
| ~Debug () override |
|
virtual int | setDebugLevel (const int &debugLevel) |
|
int | setWrapper (const Wrapper *wrapper) override |
|
int | printMsg (const std::string &msg, const debug::Priority &priority=debug::Priority::INFO, const debug::LineMode &lineMode=debug::LineMode::NEW, std::ostream &stream=std::cout) const |
|
int | printMsg (const std::vector< std::string > &msgs, const debug::Priority &priority=debug::Priority::INFO, const debug::LineMode &lineMode=debug::LineMode::NEW, std::ostream &stream=std::cout) const |
|
int | printErr (const std::string &msg, const debug::LineMode &lineMode=debug::LineMode::NEW, std::ostream &stream=std::cerr) const |
|
int | printWrn (const std::string &msg, const debug::LineMode &lineMode=debug::LineMode::NEW, std::ostream &stream=std::cerr) const |
|
int | printMsg (const std::string &msg, const double &progress, const double &time, const int &threads, const double &memory, const debug::LineMode &lineMode=debug::LineMode::NEW, const debug::Priority &priority=debug::Priority::PERFORMANCE, std::ostream &stream=std::cout) const |
|
int | printMsg (const std::string &msg, const double &progress, const double &time, const debug::LineMode &lineMode=debug::LineMode::NEW, const debug::Priority &priority=debug::Priority::PERFORMANCE, std::ostream &stream=std::cout) const |
|
int | printMsg (const std::string &msg, const double &progress, const double &time, const int &threads, const debug::LineMode &lineMode=debug::LineMode::NEW, const debug::Priority &priority=debug::Priority::PERFORMANCE, std::ostream &stream=std::cout) const |
|
int | printMsg (const std::string &msg, const double &progress, const debug::LineMode &lineMode=debug::LineMode::NEW, const debug::Priority &priority=debug::Priority::PERFORMANCE, std::ostream &stream=std::cout) const |
|
int | printMsg (const std::string &msg, const double &progress, const debug::Priority &priority, const debug::LineMode &lineMode=debug::LineMode::NEW, std::ostream &stream=std::cout) const |
|
int | printMsg (const std::vector< std::vector< std::string > > &rows, const debug::Priority &priority=debug::Priority::INFO, const bool hasHeader=true, const debug::LineMode &lineMode=debug::LineMode::NEW, std::ostream &stream=std::cout) const |
|
int | printMsg (const debug::Separator &separator, const debug::LineMode &lineMode=debug::LineMode::NEW, const debug::Priority &priority=debug::Priority::INFO, std::ostream &stream=std::cout) const |
|
int | printMsg (const debug::Separator &separator, const debug::Priority &priority, const debug::LineMode &lineMode=debug::LineMode::NEW, std::ostream &stream=std::cout) const |
|
int | printMsg (const std::string &msg, const debug::Separator &separator, const debug::LineMode &lineMode=debug::LineMode::NEW, const debug::Priority &priority=debug::Priority::INFO, std::ostream &stream=std::cout) const |
|
void | setDebugMsgPrefix (const std::string &prefix) |
|
| BaseClass () |
|
virtual | ~BaseClass ()=default |
|
int | getThreadNumber () const |
|
virtual int | setThreadNumber (const int threadNumber) |
|
TTK processing package for the computation of persistence diagrams.
Compute the persistence diagram of a function on a triangulation. TTK assumes that the input dataset is made of only one connected component.
- Author
- Guillaume Favelier guill.nosp@m.aume.nosp@m..fave.nosp@m.lier.nosp@m.@lip6.nosp@m..fr
-
Julien Tierny julie.nosp@m.n.ti.nosp@m.erny@.nosp@m.lip6.nosp@m..fr
- Date
- September 2016.
This package computes the persistence diagram of the extremum-saddle pairs of an input scalar field. The X-coordinate of each pair corresponds to its birth, while its smallest and highest Y-coordinates correspond to its birth and death respectively.
In practice, each extremity of a persistence pair is represented by its vertexId and critical type. Based on that, the persistence of the pair and its 2D embedding can easily be obtained.
Persistence diagrams are useful and stable concise representations of the topological features of a data-set. It is useful to fine-tune persistence thresholds for topological simplification or for fast similarity estimations for instance.
Related publication
"Computational Topology: An Introduction"
Herbert Edelsbrunner and John Harer
American Mathematical Society, 2010
Five backends are available for the computation:
1) FTM
Related publication
"Task-based Augmented Contour Trees with Fibonacci Heaps" Charles Gueunet, Pierre Fortin, Julien Jomier, Julien Tierny IEEE Transactions on Parallel and Distributed Systems, 2019
2) Progressive Approach
Related publication
"A Progressive Approach to Scalar Field Topology"
Jules Vidal, Pierre Guillou, Julien Tierny
IEEE Transactions on Visualization and Computer Graphics, 2021
3) Discrete Morse Sandwich (default)
Related publication
"Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for
Scalar Data -- An Algorithm and A Benchmark"
Pierre Guillou, Jules Vidal, Julien Tierny
IEEE Transactions on Visualization and Computer Graphics, 2023.
arXiv:2206.13932, 2023.
Fast and versatile algorithm for persistence diagram computation.
4) Approximate Approach
Related publication
"Fast Approximation of Persistence Diagrams with Guarantees"
Jules Vidal, Julien Tierny
IEEE Symposium on Large Data Visualization and Analysis (LDAV), 2021
5) Persistent Simplex
This is a textbook (and very slow) algorithm, described in "Algorithm and Theory of Computation Handbook (Second Edition)
- Special Topics and Techniques" by Atallah and Blanton on page 97.
- See also
- ttkPersistenceDiagram.cpp for a usage example.
Online examples:
Definition at line 150 of file PersistenceDiagram.h.